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CONTACT ~ROELEM FOR A TWO-LAYER AGING VISCOELASTIC FOUNDATION* 

E.V. KOVALENKO and A.V. MANZHIROV 

A solution is given for the problem of the frictionless impression of a stamp into 
a two-layered aging viscoelastic strip in the case of plane strain. Theupperlayer 
is thin. The lower layer is hinge-fixed along the foundation. It is assumed that 
the layers are in contact without friction, the force acting on the stamp and the 
domain of contact do not change with lapse of time, the rheological properties of 
the layers are described by the equations of the linear creep theory of aging mat- 
erials, and the layers are fabricated at different times. 

By using the Fourier integral transform in the longitudinal coordinate and the principle 
of correspondence in the linear creep theory of aging media, the problem under consideration 
is reduced to the determination of unknown contact stresses under the stamp from an integral 
equation of the second kind containing Fredholm and Volterra operators. In the general case, 
the solution of the equation obtained is constructed by asymptotic method for relatively large 
times. In particular, when the hereditary properties of the layer materials are identical, 
expansions are found for the fundamental characteristics of the phenomenon, which are validin 
the whole range of time variation. 

1. Let a layer O,<y,< k be hinge adherent to the surface of a layer of large thickness 
H lying without friction on an undeformable foundation. We assume a rigid stamp is impressed 
without friction by a force p with eccentricity of application e on the upper boundary of such 
a composite medium. 

We associate the coordinate system X& with the two-layer packet, and x'o'y' with the 
stamp. The surface of the stamp foundation is given in the Z'y'axes 
by the function y' ::-gjz'), and the line of contact is determined by 
the inequality 15’ 1 <a (Fig.1). 

The rheological properties of the two-layer foundation will be 
described by the linear creep theory equations of aging materials 
/l/ (the ntie+rs k =I, 2 are appended to each layer counting from 
the top down) 

4) (T) Kc”) (t - T;“‘, T - x-r’) &j 

Here stf@l (t), e@)(t) are the stress and strain tensor deviators, 3&t') (t) is the volume 
strain, o@)(t) is the mean hydrostatic pressure, KW(t,t) is the creep kernel for the uniaxial 
state of stress, Cck)(& Z) is the measure of the creep, t0 is the time of application of the 
stress to the element of the aging viscoelastic medium, Tl(k) is the time of fabrication of 
this element. It is taken into account in (1.1) that v(k), the Poisson's ratio, and Eck) , the 
modulus of instantaneous elastic strain of the material of the k-th layer, are independent 
of time, 

We shall examine the properties of the function C('~(t,T). It is known (**) thatthemeasure 

of creep C@) (t, t)can, under natural aging contitions when the material aging process is consider- 
ed independent of the strain process, be represented as the product of two functions 

*Prikl.Matem.Mekhan.,46,No.4,674-682,1982 

**) Arutiunian, N.Kh. Theory of creep of inhomogeneously-aging bodies. Preprint of the 
Institute of Problems of Mechanics, Academy of Sciences of the USSR, Moscow, No.170, 1980. 
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C(k) (t, T) = C(k) (t - t, T) = (P(k) (T) f(k) (t - 1) 

cptk) (7) = lim C(k) (t, t), VT, Cc*) (t, t) G 0 
t-m 

(1.2) 

one of which cp@)(~) takes accountofthe material aging process while the other ftk)(t - T) is 

the influence of the duration of its loading. The aging function @j(r) is continuous, bound- 

ed, and decreases monotonically with the increase in age, tending to a certain constant C,,(k), 

which is the limit value of the measure of material creep in its old age. The function 

/tk)(t- T), characterizing the hereditary properties of the material, would vary within the 

limits 0 <ltk)(t - t) < 1 in the range O.<t--T<W. Approximating f(Q(t -t) by a finiteset 

of exponential functions 

f(k) (t - T) = 5 Bjk’ exp [- ylk’(t - T)] 
j=O 

@‘= 1, jioB\k'=O, $jk'=O, yjk’>O (j = 1,‘L.. , IV) 

where Bj(k),Y+k) are constant parameters selected in a suitable manner for this material, we 

write in conformity with (1.1) and (1.2) 

lim K(k) (t, r) = [cp@) (z)l' (1.3) 
f-m 

Now using the results of /2/ and the principle of correspondence /l/, we obtain an in- 

tegral equation in the unknown contact pressures q(x, t) under the stamp. Taking account of 

the smallness of the quantity ha-’ and the notation 

t* =Ea-', I* =~a-', t* =tr;', e(b) = 0.5,9, [I -(&))2]-l 

c = 0.5ha-'n8(2)(8('))-1, ($')* = $)T,l, q* (5*, t*)= 

(0@))-'q(s, t), EWJk)(t, t)= [C(k) (t*, r*)]*, g(z) = ag* (z*) 

(we later omit the asterisk), we write it in the form 

(1.4) 

I x I < 1, 1 < t Q T < cm, D = In (Ha-‘) - 0.352 

Here 6 (t) + U(t)2 is the rigid displacement of stamp under the action of the applied 
force P and the moment h4 = Pe. 

The statics conditions 

RI = P(czO@))-~ = i Q(S, t) dx, R2 = Pe (u%(*))-~ = \ xq (x, t) dx (1.5) 

--I -1 

must be added to (1.4). 

We note that for t =I equation (1.4) and conditions (1.5) acquire a form known from the 

theory of classical contact problems and correspond to the problem of impression of a stamp 

into an elastic strip of large thickness covered by Winkler springs /3/ 

(1.6) 

RI= { q(x,l)dx, &= i xq(x,l)dx (1.7) 
-1 --I 

Moreover, it is shown /3/ that if the function g(t) E&(-l. I), then the solution of the 
integral equation (1.6) in the space L, (-1,l) exists and is unique for any value of the para- 
meter C E (0, co). 

2. Let US construct the solution of (1.4) for the problem formulated in the case P = 
const. Without limiting the generality of the discussion, we study just the even variant (g(r) 
is an even function of x, and a(t)= 0) by keeping in mind that everything can be done anal- 
ogously for the odd case. 
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In conformity with the algorithm elucidated in /4/, let us examine the _ ew~ivalerit: 
integral equation in place of (1.4): 

t 
c q(x,f)-q(x,l)-~q((I,T)li(~)(I-?jl)*T-T:I))di] ~’ 

[ 
1 

(L. Li 

and let us seek its solution in the form 

Representing the function s(t) that characterizes the rigid displacement of the stamp in 
the form /4/ 

6 (t) = 6Y (t) + so t fg &L/i (f) 
i=l 

i2.3) 

where 6, Aj (j =: 0, j,..., ,. .) are constants, we obtain 

cqo (x) s k’(‘) (t - T:‘), T - T:“) (ET 1 

1 
t 

s K(Z) (t - TY’, ‘I - T?‘) do i q. (E) [ - In 1 E - x 1 + D] dg = 
-1 

(2.4) 

s Zi (T) IKcz) (t - Tr’, T - r?‘) + a,clP) (t - tl , 
(1) 

1 
z - +‘)I dT= (1 + car) [Zi (t) - Zt (I)] (2.5) 

We note that for such a choice of the solution of the problem (see (2.2) and (2.31), 

equation (2.4) is not successfully satisfied exactly in the general case. Taking into account 

the behavior of the creep kernel for large times (1.3), we satisfy (2.4) in the asymptotic 

sense as t4 00. We set 

(this relationship is satisfied exactly if the 

layers are identical). Then 

hereditary properties of the material of the 

y(I)=--5(l)(t--a~‘,r--z~‘)dT, y(i)=0 
1 

(2.8) 

and qo(5t) is determined from an integral equation of the type (1.6) 

for which the method of solution is elucidated in detail in /3/. 
We examine the Fredholm integral equation (2.7) and we seek its solution in the form Of 
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a Fourier series in an orthonormalized system of Legendre polynomials 

m 

Qi (I) = JI )/TCZifii z Up'Pzj (I), Pj* (5) = 1/q- Pj (z) 

0 

(2.10) 

It is known /5/ that they form a basis in L2(-1,l). Furthermore, expanding the kernel 

(2.7) in a double series in the mentioned system of polynomials 

(2.11) 

substituting (2.10) and (2.11) into (2.7), using the property of orthogonalityoftheLegendre 

polynomials, and equating coefficients of the left and right sides for polynomials of identical 

number in the relationship obtained,weobtain (6,,is the Kronecker delta) 

a, 5 &. = (i) 
&I -t 60, (i>l,n=O,l,...) (2.12) 

,=0 J nl 

According to the inequality 

iaiOr:n=&<r-. El = const 

resulting from (2.11), it can be asserted that the operator 

from the total space of quadratically summable sequences 1, 

tinuous there. Therefore, if the main determinant A of the 

zero, then the Hilbert theorem about its solvability /5/ is 

account of (2.10), we find from (1.5) 

RI= PO + 2 Pizi (t), PO z S 40(x)dx 
i=l -1 

1 

in the left side of (2.12) acts 

into 1, and is completely con- 

system (2.12) is different from 

applicable. Moreover, taking 

(2.13) 

Pi= 1 qi(s)dx=n~/Zaisiab"--_O, a(d)=0 (i>l) 
-1 

The second of conditions (2.13) is to determine the unknown quantities ai. Indeed, from 

the system (2.12) we have a,(') = AlA-', where A1 is an auxiliary determinant obtained from A 

by replacing the first column by the elements {1,0,...,0,...}. The determinant A1 is sym- 
metric, consequently its roots a = ai(i > 1) are real. Have determined c$ we then find 

ajc')(j = 1,2,. ..) from the infinite algebraic system (2.12), and we therefore construct the 

sequence of functions (qi (x)(x~2aiSi)-I}. 
We now satisfy the selection of a countable set of constants 6i and ~~(1) (i > 1) for the 

integral equation (1.6) (a(l)- 0). Assuming g(s)= L, (-1, I), we represent it in the form 

g (4 = ngo &K (4 (2.14) 

Substituting (2.14), and (2.11) into (1.6), we obtain 

CXj+ 5 rjnX,=n[~/Z6(1)60j_gjl (j=Ovl,.‘.) (2.15) 
n=o 

Xj = i q (x, 1) Pz*, (x) dx. 
-1 

(2.16) 

Having solved the infinite algebraic system (2.15), by taking account of the formula 

we will have from the relationship (2.16) 

Bz(l)=b, bEL2 (2.17) 

B = JI v/2 (1 a,&iiay) jJ , b = {Xi [- $ ~0 (2) Ptj* (x) dz} 
-1 

55 (1) = (2, (1)) 
(i = 1, 2, . j = 0, 1, 2, .) . . ., 

We now solve the system (2.17). Firstly, taking account of the results in /6/, it can 
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be asserted that fit (ai <fil+r (i>l), where bt are characteristic primes of the operator :I 
(2.7). But then ai = 0 [i (In i)-‘1 as i -+ co. Secondly, setting 
be given be1 .ow), by virtue of (2.12) 

61 =? ai-'/ (a foundationwill 

i.e., the operator B is completely continuous from 1, into I%. 
The element z(')(~)GzM (the set of uniformly bounded and equipotentially continuous sequ- 

ences in I$) will be caLled a quasisolution /7,8/ of (2.17) inMif 

inf (11 B&) (i) - b jjir: &f (I) E Ml 
Besides (2.17) we introduce the truncated system 

B*z* (1) = b* 

B* = al v/z 11 a,s*aj” 11, Qp 

z* (1) = {Z! if)) 
(i = f, 2, . * .( n; j = 0, 1, 2, f * ., n -i) 

that if the operator B-l (not necessarily bounded) exists, then the 
in the compact Malso exists, is unique, and depends continuously on 

It is proved /7,8/ 
quasisolution of (2.17) 
the right side b. Moreover 

lim 11 z(r) (1) - z* (1) IIt1 = 0 
“--CC 

12.18) 

and z*(l)can be found by the methods of /7,8/, say. 
Furthemore, it follows from (2.10) 

(Qj, qj)L*(_*,*) = 2TCZ(C2 a )-‘I’ i i jj U(i)tl(‘) < n n‘i n=o (2.19) 

We note that 6(1)in the system (2.15) can be considered independent of ai (i 2 if because 

6(1)=sOt i~lkl/*(l) 

and is detemlined during the solution of the problem in terms of the value of the impressing 
force i?, by using the first statics condition (1.7) /3/. 1t is here pertinent to note that 

because of the first condition in (2.13) the constant 6 is also related to R, (compare (2.9) 

to (1.6)). 

3. We turn to an investigation of the Volterra integral equation of the second kind 

(2.5). According to the constraints imposed on its kernel in Sect.1, it is solvable uniquely 
/5/ in the space of functions C (1, T) continuous in 11, T1 for any values of the parameters ai 
and C. To construct the approximate solution of (2.5), we limit ourselves to the first two 

terms /I/ in the epxressions for r$*){~) and f@>(t --T) , i.e.,we take 

I'*' ft - t) = 1 - exp i---y@) (t -z)l 13.13 

rp(") (X) = C&h') + A(k) exp (_@'k'~), f3P) = const 

It is known /l/ that the solution (3.1) of the integral equation (2.5) can be obtained 
by reducing it to a certain ordinary second order differential equation with variable coef- 

ficients. Furthermore, assuming for simplicity that yC*) = y(*) = y, fi(') = fiP) = p, A(') C= A(') z A*. 

C,C') = C,@) = C, , we wil.1 have 

or 

2," (t) + y II + C, + pLi (~1(~), .T,@)) e-a'] zi' (t) = 0 

zi' (1) zi-* (1) + yCO + ye-@pLi (z~(~), tr@)) = 0 

u I (T1(l), r,(*)) = A * (1 $ a,c)-' [exp (fizl(“)) + ai c exp (@$‘))I 

(3.2) 

zi (t) = zj (1) - zi (1) y [Co + e-fjii (ly’, rp)] x (3.3) 

i exp(-+(l + C,)(z - I)+ ~~~i(~~),~~2))(~ -e-b('-")ljdr 
1 

Having determined the function Zi(t) according to (3.31, the sequence {Yi(t)} can be 
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constructed from (2.6), which we write in the following form by taking account of the relation- 

ships (1.1) and (1.2) 

yi (t) = q (t) + zi (1) C(Z) (t - 11 (21, * _ $‘) + 5 zi’ (T) C(Z) (t - p, 1 - 1:2’) dt, yi (1) = zi (1) (3.4) 

1 

i.e., in addition the solution of the formulated problem q(t, t) and s(t) can also be written 

down. For the final foundation of the solution constructed, the convergence of the series 

(2.2) and (2.3) as well as the linear independence of the system of functions {yi (t)) should 

be proved. 

Theorem 1. The system of functions {Yi(t)} is linearly independent. 

We shall reason for any finite system of functions {si(t)} and we shall assume it linearly 

independent, i.e., such constants Dj exist among which are some different from zero, and the 

following equality is satisfied 

2 DjZj (t) c 0 (3.5) 
j=1 

Then taking account of (2.5) and the behavior of the creep kernels for a sufficiently large 

time, we write 

c F (,?), Ti”) +Caj 

1 + caj 
Djzj (t) szz 0 

j=l 

(3.6) 

From (3.5) and (3.6) we will have 

This last equation is satisfied if and only if all Dj s 0. The contradiction obtained indeed 

proves the linear independence of the system of functions (zi(t)), 
The linear independence of the functions {Yi(t)} follows from (3.3) and (3.4). 

Theorem 2. The series (2.2) converges uniformly in t in [i, T] for all Z'> 1 in L, (-1, 
1) and determines the generalized solution of (1.4). 

In fact, we estimate the residue of the series 

(3.7) 

where & is an arbitrarily small number. The inequality (2.19), the fact of the boundedness of 
ri (t) [Zi (1)1-r, as well as the reasoning presented at the end of Sect.2 are used here. 

If the inequality (3.7) is satisfied, 
[I, Tl (T > 1) 

then the series (2.2) converges uniformly at t c 
in L,(-1,i) and the first property of the generalized solution is satisfied (see 

/9/, p.500). As follows from the reasoning in Sect-Z, its remaining properties are also con- 
served. The theorem is proved. 

ously). 
(The convergence of the series (2.3) is established analog- 

4. As an illustration we present the solution of the 

g(z)=0 (the stamp has a flat base). 

i.25 
4 rnnt'%nin ~~ 

v 

Fig.2 
Ar 1 

0 0.5 1 

formulated problem in the casewhen 

Fig.3 <Fig.4 
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Such values 
e = a(t) = 0; R, = i; Ha-' = 6, c =I) 0.5; Cs = 0.5522;A* =4; y = 6,5 z 3.1; 10 = 100 daya 

of the parameters are encountered for concrete structures analyses. 
Graphs of the distribution of the contact pressures q(.z, f) are presented in Fig..! fo:: 

AX= .f') - 51(t) z,zz i and t = i (.z),t =1.05 (2). f = Z(3). It is seen that as the time grows and the other 
factors remain unchanged the normal stresses under the stamp tend to a certain limit value. 

The dependences between '1,,, (t, A~) = q (I. t, A'),qmln(f, At)-- q(O, i, RT) and AT are displayed i ii 
Fig.3 for different fixed values of t 

(qm,,(1.05,A~)-(1),Q,nar (2, A+-(% q,,,&, AT) - j3),qm,,, (1.05, A%)- (4)). 

It can be noted that as AT grows the maximal contact pressures diminish While the minimal 
pressures increase. 

The dependence 6(t) is presented in Fig.4 for fixed values of As (As= O--\I), S-r= 0.8-(z), 
AT= I- (3)). It is seen that as the time t lapses the function S(i) grows and tends tothelimit 
value which will be the larger the greater the As. 

Remarks. lo. In the case when the layers are fabricated from the same material and 
have the very same age but the force acting on the stamp with a flat base is independent of 
time, by taking account of the results in /2/ and the correspondence principle /I/ We obtain 
that the contact pressure distribution will be the same as in the elastic problem, i.e., in 
this case the creep exerts no influence on the contact pressure distribution. 

2O. The solution (3.1) of the integral equation (2.5) can be obtained in closed form 
even for arbitrary aging functions $*)(T). In particular, for y(l)= y@) = y we will have 

~i(I)=ii(l![l+SR1(I,?)dr] 

1 

where Ri (t. T) is the resolvent of the N. Kh. Arutiunian kernel 

1 a 
A-, (1, T) =l+cai as ((1 - e--)) [p (T - Tf’) + ,pp (z _ $))I) 

whose form is presented in /lo/. 
The authors are grateful to N. Kh. Arutiunian and 

research. 
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